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Automated Cluster Testing and Optimization

Introduction
• How to setup an automated testing framework to get benchmarks 

and results that will help determine tuning parameters and improve 

the performance of your Spark cluster
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Introduction

Development and Test Environment (DTE)

• Support the architecture, design, and test processes of the lifecycle

• Provide a baseline of technologies for prototyping and testing 

capabilities supporting cybersecurity use cases

• Manage a shared and collaborative environment

• Evaluate relevant technology and conduct demonstrations as 

appropriate to inform engineering efforts and lessen risk

• Prototype data analysis techniques using the variety of available 

data types and tools

• Deliver Trend Reports to capture changes in the 

industry/community for relevant technology spaces
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Automated Cluster Testing and Optimization

Automated Testing Tools
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Automated Testing Tools

HiBench (Intel) - Measure speed, throughput, and system resource utilization

• Micro benchmark workloads:

- Sort, WordCount, TeraSort, Sleep, Enhanced DFSIO

• SQL workloads:

- Scan, Join, Aggregate

• Machine Learning workloads:

- Bayesian Classification, K-means clustering, Logistic Regression, Alternating Least Squares, Gradient Boosting Trees, 

Linear Regression, Latent Dirichlet Allocation, Principal Components Analysis, Random Forest, Support Vector Machine, 

Singular Value Decomposition

• Websearch benchmark workloads:

- PageRank, Nutch indexing

• Graph benchmark workloads:

- NWeight

• Streaming workloads:

- Identity, Repartition, Stateful Wordcount, Fixwindow

Sample Output:

Supported releases:
Hadoop: Apache Hadoop 2.x, CDH5, HDP

Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x

Flink: 1.0.3

Storm: 1.0.1

Gearpump: 0.8.1

Kafka: 0.8.2.2
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Automated Testing Tools

SparkBench (IBM) – Benchmarking and simulating Spark jobs

• Spark-Submit-Config:

- SparkBench converts config files into spark-submit scripts

- Allows multiple spark-submits in series or parallel

• Workloads:

- Standalone Spark jobs with input/output

- Data Generators: Graph, Kmeans, Linear Regression

- Kmeans, Logistic Regression, Sleep, SparkPi, SQL

• Workload Suites:

- Collections of one or more workloads

- Control benchmark output and parallelism

• Custom Workloads:

- Use Scala and SBT to build onto SparkBench

- Test custom Spark libraries by including JAR

Sample Output:
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Automated Testing Tools

SparkBench Config Workload Definition

https://codait.github.io/spark-bench/
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Automated Cluster Testing and Optimization

Mothra Refresher
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Mothra Refresher

Mothra Architecture

• Facilitate bulk storage and 

analysis of cybersecurity data 

with high levels of flexibility, 

performance, and 

interoperability

• Reduce the engineering effort 

involved in developing, 

transitioning, and 

operationalizing new analytics

• Serve all major constituencies 

within the network security 

community, including data 

scientists, first-tier incident 

responders, system admins, 

and hobbyists
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Mothra Refresher

SiLK vs. Mothra

Scalability

• Mothra enables more 

complex analyses at a 

scale beyond the capability 

of SiLK’s single-node 

architecture
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Automated Cluster Testing and Optimization

Test Plan
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Test Plan

The goal of our testing was to identify the performance and 

benchmarks for the DTE cluster in the following areas:

1. Cluster Operations using pre-built, Micro and Machine 

Learning Workloads.

2. Mothra Dataframe Creation and Spark Query Performance.

3. Mothra Ingest Process Performance running Collector and 

Packer processes on a 16 core physical edge node.
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Test Plan

Test Environment Details

• Number of Nodes: 40+10 Virtual nodes for NameNode, YARN 

Resource Manager, Zookeeper, and Edge Nodes

• RAM: 256GB, Disks: 4 Disks - 600 GB, CPU: 2x8 cores

• Network: Intel Corporation 82599ES 10-Gigabit dual port

• HDP Version: HDP 2.6.4 YARN

• Spark Version: Spark 2.2.1

Test parameters Values

spark.submit.deployMode client

spark.shuffle.service.enabled true

spark.scheduler.mode FIFO

spark.master yarn

spark.executor.memory 4g

spark.dynamicAllocation.minExecutors 4

spark.dynamicAllocation.initialExecutors 4

spark.dynamicAllocation.enabled true

spark.driver.port 36562

spark.driver.memory 8g
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Test Plan

HiBench Generated Data

• Four groups: Large, Huge, Gigantic, and BigData

Large Huge Gigantic BigData

Naïve Bayes hibench.bayes.large.pages 100000
hibench.bayes.large.classes 100
hibench.bayes.large.ngrams 2

hibench.bayes.huge.pages 500000
hibench.bayes.huge.classes 100
hibench.bayes.huge.ngrams 2

hibench.bayes.gigantic.pages 1000000
hibench.bayes.gigantic.classes 100 
hibench.bayes.gigantic.ngrams 2

hibench.bayes.bigdata.pages 20000000
hibench.bayes.bigdata.classes 20000
hibench.bayes.bigdata.ngrams 2

Linear Regression hibench.linear.large.examples 200000
hibench.linear.large.features 30000

hibench.linear.huge.examples 300000
hibench.linear.huge.features 50000

hibench.linear.gigantic.examples 500000
hibench.linear.gigantic.features 80000

hibench.linear.bigdata.examples 1000000
hibench.linear.bigdata.features 100000

Random Forest hibench.rf.large.examples 1000
hibench.rf.large.features 1000

hibench.rf.huge.examples 10000
hibench.rf.huge.features 200000

hibench.rf.gigantic.examples 10000
hibench.rf.gigantic.features 300000

hibench.rf.bigdata.examples 20000
hibench.rf.bigdata.features 220000

K-means hibench.kmeans.large.num_of_clusters 5
hibench.kmeans.large.dimensions 20
hibench.kmeans.large.num_of_samples 20000000
hibench.kmeans.large.samples_per_inputfile
4000000
hibench.kmeans.large.max_iteration 5
hibench.kmeans.large.k 10
hibench.kmeans.large.convergedist 0.5

hibench.kmeans.huge.num_of_clusters 5
hibench.kmeans.huge.dimensions 20
hibench.kmeans.huge.num_of_samples 100000000
hibench.kmeans.huge.samples_per_inputfile
20000000
hibench.kmeans.huge.max_iteration 5
hibench.kmeans.huge.k 10
hibench.kmeans.huge.convergedist 0.5

hibench.kmeans.gigantic.num_of_clusters 5
hibench.kmeans.gigantic.dimensions 20
hibench.kmeans.gigantic.num_of_samples 200000000
hibench.kmeans.gigantic.samples_per_inputfile
40000000
hibench.kmeans.gigantic.max_iteration 5
hibench.kmeans.gigantic.k 10
hibench.kmeans.gigantic.convergedist 0.5

hibench.kmeans.bigdata.num_of_clusters 5
hibench.kmeans.bigdata.dimensions 20
hibench.kmeans.bigdata.num_of_samples
24000000000
hibench.kmeans.bigdata.samples_per_inputfile
40000000
hibench.kmeans.bigdata.max_iteration 10
hibench.kmeans.bigdata.k 10
hibench.kmeans.bigdata.convergedist 0.5
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Test Plan

Ixia Simulated IPFIX datasets

Filename(s) Size Record Count Bytes per Flow Description

/data/mothra-ipfix/live/ipfix-live-s1-
20180820000030-00268.yaf

1.66 MB 8,746 189.80 1 hour of live ipfix data from DTE YAF 
sensor on 8/20

/data/mothra-ipfix/ixia/yaf-ixia-
napa_lb0-20180819000021-00110.yaf

3.17 GB 21,997,654 144.11 1 hour of Ixia generated ipfix data for 
1 YAF sensor on 8/19

/data/mothra-ipfix/ixia/yaf-ixia-
napa_lb*-20180819000021-00110.yaf

22.19 GB 154,038,796 144.05 1 hour of Ixia generated ipfix data for 
8 YAF sensors on 8/19

/data/mothra-ipfix/ixia/yaf-ixia-
napa_lb*-20180819*.yaf

597.61 GB 4,159,659,052 143.67 24 hours of Ixia generated ipfix data 
for 8 YAF sensors on 8/19

/data/mothra-ipfix/ixia/yaf-ixia-
napa_lb*-2018081*.yaf

3.08 TB 21,772,346,751 141.46 5.5 Days of Ixia generated ipfix data 
for 8 YAF sensors on 8/14-8/19

Filename(s) Size Record Count Bytes per Flow Description

/data/mothra-ipfix/ixia/yaf-ixia-napa_lb7-
20180922110219-00274.yaf

263.78 MB 1,088,294 254.15 5 minutes of Ixia generated ipfix data for 1 
YAF sensor on 9/22

/data/mothra-ipfix/ixia/yaf-ixia-napa_lb*-
20180922110219-00274.yaf

2.06 GB 8,693,166 254.22 5 minutes of Ixia generated ipfix data for 8 
YAF sensors on 9/22

/data/mothra-ipfix/ixia/yaf-ixia-napa_lb7-
2018092211*

3.11 GB 13,199,568 252.92 1 hour of Ixia generated ipfix data for 1 YAF 
sensor on 9/22

/data/mothra-ipfix/ixia/yaf-ixia-napa_lb*-
2018092211*

24.89 GB 105,639,034 253.00 1 hour of Ixia generated ipfix data for 8 YAF 
sensors on 9/22

/data/mothra-ipfix/ixia/yaf-ixia-napa_lb*-
2018092*

605.74 GB 2,628,246,577 247.47 24 hours of Ixia generated ipfix data for 8 
YAF sensors on 9/22
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Test Plan

Automated Custom SparkBench Testing

Operation Query
Build IPFIX DataFrame (mothra), Count val input_data_ixia = "/data/mothra-ipfix/ixia/yaf-ixia-napa_lb*-20180815*.yaf"

val input_df = (spark.read.
fields(
"sIP", "dIP", "sPort", "dPort", "protocol", "packets", "bytes",
"startTime", "endTime",
"dnsQName" -> "ipfix:yaf_dns/yaf_dns_qr/dnsQName",
"dnsQAddr" -> "ipfix:yaf_dns/yaf_dns_qr/yaf_dns_a/sourceIPv4Address" )
.ipfix(input_data_ixia )
input_df.count()

Simple Filter (Spark), Count var dns_flows = input_df.filter($"dport" === 53)
dns_flows .count()

Column Selection & Display (Spark) https_flows = input_df.filter($"dport" === 443).select(
"sip", "dip", "sport", "dport",
"protocol", "packets", "bytes", "sslCertificateHash")
https_flows.count()

Sorting (Spark) https_flows.sort($"bytes".desc).show()

Aggregation (Spark) https_flows.
groupBy($"dip").
avg("packets", "bytes").
sort($"avg(bytes)".desc).count()

SQL Query (SparkSQL) input_df.registerTempTable("df")
spark.sql("""SELECT dnsQName,
AVG(packets) AS avg_packets,
SUM(packets) AS sum_packets,
AVG(bytes) AS avg_bytes,
SUM(bytes) AS sum_bytes
FROM df
WHERE dnsQName IS NOT NULL
GROUP BY dnsQName
ORDER BY sum_bytes DESC""").count()

Compound Query w/ Join, Filter, & Select (SparkSQL) val bad_names = spark.read.parquet("/user/tonyc/data/sample/bad_dns_names.parquet")
var bad_addrs = (
dns_flows
.join(bad_names, $"dnsQName" === $"name")
.select("dnsQAddr")
.distinct).toDF("addr")
val pwned = input_df.join(bad_addrs, $"dIP" === $"addr").drop("addr")
pwned.count()
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Automated Cluster Testing and Optimization

Results and Tuning
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Results and Tuning

Operational ML Workloads

• Machine Learning workloads benchmark average throughput in GB/s over one month
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Results and Tuning

SparkBench Custom Mothra Workloads

• Mothra Dataframe load time in minutes by input file record count and file size below.  Graphs shows two 

different raw, unpartitioned file schemes.  Green is one file per hour of data and black is twelve files per hour of 

data.  There is a significant performance improvement when files are collected every five minutes vs. one hour. 
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Results and Tuning

SparkBench Custom Mothra Workloads

• Spark Submit completion times in seconds for Mothra and Spark queries.  Graph is comparing equivalent data 

sets with one file per hour vs twelve files per hour.  Caching in the second chart adds some overhead during 

load, but there is significant improvement in subsequent tasks reducing average processing time for all 

workloads from 293 seconds to 118 seconds a 60% improvement.
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Results and Tuning

Mothra Packer Testing

• Load times and throughput for Mothra Packer.  Two sample runs of 12 max pack jobs on a 16 core physical 

edge node.  Rwsender landed 96 files (1 hour) at once with an average of ~271 MB per file (91,346,434 

records). The average throughput per process is ~3MB/s.  Adding polling and flush overhead, the average of 

total throughput is ~27MB/s
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Results and Tuning

Mothra Packer Testing

• Two sample runs 16 core edge node.  Rwsender landed 96 files (1 hour) at once with an average of ~271 MB 

per file (91,346,434 records). The black dashed line shows the trend of completion time of each pack job. 

• Test (a) shows a flat trend line which means that the jobs are keeping up with the files landing from rwsender

while test (b) shows an incline trend which means that jobs are slowing over time and not able to keep up with 

the file ingestion.  In both cases, one hour of our test data was packed in under 20 minutes, but test (a) should 

maintain this speed with more load, while test (b) would continue to slow as more files are landed.

(a) 12 Max Pack Jobs (b) 6 Max Pack Jobs
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Results and Tuning

YARN Queue Manager / Capacity Scheduler

• Certain settings needed to be changed to take full advantage of the cluster resources and utilize dynamic allocation in 

Spark.  Capacity and Max Capacity are not intuitive and only relate to the queue, not the whole cluster.  In order to use 

resources beyond the queue (80% * 60% = 48%) , User Limit Factor needs to be set above 1.

• Depending on the number of users, Minimum User Limit and Ordering Policy can be used to avoid conflicts among 

analysts for cluster resources.
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Results and Tuning

Spark Tuning

• Executor Cores

- Typically no more than 5 cores can achieve full write throughput to HDFS

- Setting cores too low (tiny executors) for large jobs on large clusters will cause garbage collection and out of memory errors

- With executor-cores > 1, the DominantResourceCalculator must be selected for YARN

• Executor Memory

- Calculated based on cluster size and executor-cores (Example = 6 nodes, 16 cores/node, 64gb memory/node, 5 executor-cores)

yarn.nodemanager.resource.cpu-vcores * total cluster nodes = total 
available cores

15 * 6 = 90 total available cores

total available cores / executor-cores = total available executors 90 / 5 = 18 total available executors

total available executors / total cluster nodes = number of executors per 
node

18 / 6 = 3 number of executors per node

yarn.nodemanager.resource.memory-mb / number of executors per node 
= memory per executor

63 / 3 = 21 memory per executor

memory per executor * (1 - spark.yarn.executor.memoryOverhead) = 
roundDown(executor-memory)

21 * (1 - .07) = roundDown(19.53) = 19 GB = 
executor-memory
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Results and Tuning

Spark Tuning

• Dynamic Allocation Executor Idle Timeout

- This option controls when executors are removed once idle.  

- Losing an executor due to a timeout and starting a new one adds additional overhead to a spark job.

- For some use cases, such as exploratory analysis in Jupyter or Zeppelin, the default timeout of 60s might be too short.

- Finding the ideal value for this, per use case, will require an iterative process between system administrators, cluster developers, and 

analysts.
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Automated Cluster Testing and Optimization

Questions?

Contact

bmpowell@cert.org

mailto:bmpowell@cert.org?subject=FloCon Talk: 

